50 research outputs found

    "So what will you do if string theory is wrong?"

    Full text link
    I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics

    String and M-theory: answering the critics

    Full text link
    Using as a springboard a three-way debate between theoretical physicist Lee Smolin, philosopher of science Nancy Cartwright and myself, I address in layman's terms the issues of why we need a unified theory of the fundamental interactions and why, in my opinion, string and M-theory currently offer the best hope. The focus will be on responding more generally to the various criticisms. I also describe the diverse application of string/M-theory techniques to other branches of physics and mathematics which render the whole enterprise worthwhile whether or not "a theory of everything" is forthcoming.Comment: Update on EPSRC. (Contribution to the Special Issue of Foundations of Physics: "Forty Years Of String Theory: Reflecting On the Foundations", edited by Gerard 't Hooft, Erik Verlinde, Dennis Dieks and Sebastian de Haro. 22 pages latex

    Chern-Simons Number Diffusion and Hard Thermal Loops on the Lattice

    Get PDF
    We develop a discrete lattice implementation of the hard thermal loop effective action by the method of added auxiliary fields. We use the resulting model to measure the sphaleron rate (topological susceptibility) of Yang-Mills theory at weak coupling. Our results give parametric behavior in accord with the arguments of Arnold, Son, and Yaffe, and are in quantitative agreement with the results of Moore, Hu, and Muller.Comment: 43 pages, 6 figure

    Classical Sphaleron Rate on Fine Lattices

    Get PDF
    We measure the sphaleron rate for hot, classical Yang-Mills theory on the lattice, in order to study its dependence on lattice spacing. By using a topological definition of Chern-Simons number and going to extremely fine lattices (up to beta=32, or lattice spacing a = 1 / (8 g^2 T)) we demonstrate nontrivial scaling. The topological susceptibility, converted to physical units, falls with lattice spacing on fine lattices in a way which is consistent with linear dependence on aa (the Arnold-Son-Yaffe scaling relation) and strongly disfavors a nonzero continuum limit. We also explain some unusual behavior of the rate in small volumes, reported by Ambjorn and Krasnitz.Comment: 14 pages, includes 5 figure

    The Sphaleron Rate in SU(N) Gauge Theory

    Full text link
    The sphaleron rate is defined as the diffusion constant for topological number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure

    Lattice Chern-Simons Number Without Ultraviolet Problems

    Get PDF
    We develop a topological method of measuring Chern-Simons number change in the real time evolution of classical lattice SU(2) and SU(2) Higgs theory. We find that the Chern-Simons number diffusion rate per physical 4-volume is very heavily suppressed in the broken phase, and that it decreases with lattice spacing in pure Yang-Mills theory, although not as quickly as predicted by Arnold, Son, and Yaffe.Comment: 26 pages including 6 figures, uses psfig. Corrected for an algebra error in the original draft of hep-lat/9610013; minor rewriting and more analysi

    A critical comparison of different definitions of topological charge on the lattice

    Full text link
    A detailed comparison is made between the field-theoretic and geometric definitions of topological charge density on the lattice. Their renormalizations with respect to continuum are analysed. The definition of the topological susceptibility, as used in chiral Ward identities, is reviewed. After performing the subtractions required by it, the different lattice methods yield results in agreement with each other. The methods based on cooling and on counting fermionic zero modes are also discussed.Comment: 12 pages (LaTeX file) + 7 (postscript) figures. Revised version. Submitted to Phys. Rev.

    String theory and the crisis of particle physics II or the ascent of metaphoric arguments

    Full text link
    This is a completely reformulated presentation of a previous paper with the same title; this time with a much stronger emphasis on conceptual aspects of string theory and a detailed review of its already more than four decades lasting history within a broader context, including some little-known details. Although there have been several books and essays on the sociological impact and its philosophical implications, there is yet no serious attempt to scrutinize its claims about particle physics using the powerful conceptual arsenal of contemporary local quantum physics. I decided to leave the previous first version on the arXiv because it may be interesting to the reader to notice the change of viewpoint and the reason behind it. Other reasons for preventing my first version to go into print and to rewrite it in such a way that its content complies with my different actual viewpoint can be found at the end of the article. The central message, contained in sections 5 and 6, is that string theory is not what string theorists think and claim it is. The widespread acceptance of a theory whose interpretation has been obtained by metaphoric reasoning had a corroding influence on the rest of particle physics theory as will be illustrated in several concrete cases. The work is dedicated to the memory of Juergen Ehlers with whom I shared many critical ideas, but their formulation in this essay is fully within my responsibility.Comment: A dedication and an epilog to the memory of Juergen Ehlers. Extension of the the last two sections, removal of typos and changes in formulation, 68 pages late
    corecore